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RQLLING-ELEMENT FATIGUE LIVES OF FOUR M-SERIES STEELS 


AND AISI 52100 AT 150' F 


by Richard J.  Parker ,  Erwin V. Zaretsky, and Marshall W.Dietrich 


Lewis Research Center 


SUMMARY 

Rolling-element fatigue studies were performed with five consumable-electrode 
vacuum-melt steels. Groups of 1/2-inch- (12.7-mm-) diameter balls of each material 
were run in five-ball fatigue tes ters .  Test  conditions included a maximum Hertz stress 
of 800 000 psi  (5.52X109 N/m2), a contact angle of 30°, a shaft speed of 10 300 rpm, a 
super-refined naphthenic mineral oil lubricant, and a temperature of 150' F (340K). Care 
was taken to  maintain constant all variables known to affect rolling-element fatigue life. 
The longest rolling-element fatigue lives were obtained with AISI 52100. The 10-percent 
lives of the other four materials ranged from.27 to 68 percent of that obtained with AISI 
52100. The statistical confidence that the 10-percent lives of AISI M-1  and M-2 are l e s s  
than that of AISI 52100 is greater  than 99 percent. The lives of AISI M-10 and M-50 were 
better than AISI M-1  and M-2 but significantly less than that of AIS1 52100. Lives of dif­
ferent heat treatment lots of the same material  differed by factors as great as two. 

Contrary to  previously published work, there  appears to  be no significant difference 
among the abilities of AISI M-50, M-10, and M-2 to maintain hardness at elevated tem­
peratures.  AISI M-1 indicates a higher temperature potential than these three materials 
of about 100' F (56 K). 

INTRODUCTION 

AISI 52100 steel  has been the most common material  for  rolling-element bearings. 
Initially this high-carbon chromium steel  was produced by basic electric a r c  melting. 
Subsequently, vacuum melting processes  such as consumable-electrode vacuum -melting 
(CVM) (ref. 1)have improved the dynamic load carrying capacity and reliability of bear­
ings made from AISI 52100. 

Because of a decrease in hardness with increasing temperature,  AISI 52100 has been 



limfied to applications where the maximum temperature will not exceed 350' F (450 K). 
At about this temperature, the hardness drops below Rc58 which is considered a mini­
mum hardness for rolling-element bearing components (refs. 2 and 3). 

For  applications above 350' F (450 K), such as for advanced turbine engines, bear­
ing alloys suitable for higher temperatures must be considered. These alloys contain 
elements such as molybdenum, tungsten, silicon, and vanadium to  promote the retention 
of hardness at high temperatures. Typical of these alloy steels are AISI M-1, M-50, 
M-IO, and M-2. Based on the hot hardness minimum of Rc58, AB1 M-50 should have 
an upper temperature limit of about 600' F (589 K) (ref. 2). Likewise, AISI M-1, M-2, 
and M-10 may be useful well above the limit of AIS1 52100. However, even if  the hardness 
remains satisfactory, at temperatures above 800' F (700K) the oxidation resistance be­
comes marginal for  these steels. 

These "M" series steel alloys a r e  all more difficult to  grina and finish than AISI 
52100 (ref. 2). However, the hot hardness characterist ics of AISI M-50, for  example, 
have been so advantageous that this steel  is being specified for  many current turbine en­
gine bearings. 

There has been a considerable number of studies performed to  determine the fatigue 
lives of various bearing materials (refs. 2 and 4 to  9). However, none of these studies 
maintained the required close control on operating and processing variables such as ma­
terial hardness, melting technique, and lubricant type and batch for  a valid material  
comparison. 

The objective of this research was to compare the relative rolling-element fatigue 
lives of AIS1 52100, M-1, M-2, M-10, and M-50 steels under closely controlled operating 
conditions. All materials were in the form of 1/2-inch- (12.7-mm-) diameter grade 
10 balls and were prepared by the consumable-electrode vacuum -melt (CVM) technique 
(ref. 10). 

The previous objective was accomplished by running groups of balls of each of the 
materials as upper and lower balls in five-ball fatigue tes ters .  Test conditions included 
a drive shaft speed of 10 300 rpm, a contact angle of 30°, a maximum hertz stress of 
800 000 psi (5. 52x109 N/m 2), and a temperature of 150' F (340 K). All fatigue testing 
was conducted at SKF Industries, Inc. , King of Prussia ,  Pennsylvania under NASA con­
tract NAS 3-11617. All hardness testing was done at NASA Lewis Research Center. 

TEST SPECIMENS 

Groups of AFBMA grade 10 balls of 1/2-inch- (12.7-mm-) diameter were fabricated 
from each of the materials having the chemical compositions shown in table I. All balls 
of each material  were made from one consumable-electrode vacuum -melted ingot. The 
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TABLE I. - CHEMICAL COMPOSITION O F  TEST MATERIALS 

Material Heat 1 Chemical composition, percent 
reatment (balance is Fe) 

lot 
Mn Si  C r  Moi c -

AISI 52100 A 1.09 0. 36 0.24 1.46 :o. OE 
B 1 .07  .36 .22 1.48 <.06 
C 1.08 .34 . 2 4  1.45 <.05 

AIS1 M-50 A 0 . 8 1  0.23 0.24 5.03 1.03 4. OC 

B . 79  .24  .24  4.93 1 .05  3.9E 
C . 8 4  . 2 4  .22  4.90 1.04 4.02 

AISI M - 1 0  A 0.92 0.23 0 .20  4. 38 1.83 7.4: 
B . 8 9  . 2 5  .20  4.40 1.85 7. Of 
C .go . 2 7  . 2 0  4.44 1.84 7.22 

.-

AISI M-1 	 A 0.82 0.24 0.25 3.89 1.20 1.26 7.6E 
B .82 .26 . 2 0  3.93 1.18 1.27 7.6: 
C . 8 9  . 2 1  . 2 0  4.02 1.09 1.40 7. 8E 

__ 

AISI M-2 	 A 0.87 0.20 0.28 4. 38 4. Of 
B . 86  . 2 1  . 2 4  4.39 4. OE 

C .87 .20 ..22 4.33 4.0: 

slight variation in composition from one lot to  another of the same material  is probably 
due to e r r o r  in measurement. The balls were heat treated according to the schedules 
shown in table II. Each material  was processed in three separate heat treatment lots; 
each lot was given the same heat treatment. 

Photomicrographs of each material  are shown in figures 1t o  5. The s t ructures  
appear to be typical of each material. Larger  carbides are seen in each of the M-series 
steels than in the AIS1 52100. Hardness, retained austenite, and grain s ize  of each ma­
terial lot are shown in table III. ASTM cleanliness ratings are shown in table IV. 

3 




Heat treatment Test material 

AIS1 M-2 ATSIM-10 1 ATSIM-50 

Preheat .................... 	 1400' to 1550' F 1400' to 1600' F 
(1033 to 1118 K) (1033 to 1144 K) 

~ 

1 -
Harden 	 1540' to 1560' F 220Oo+1O0 F 2225O*1Oo F 

(1116 to 1121 K) (1477*5 K) (1491*5 K) (1477*5 K) 1 (1423k5 K) 

Quench In oil at 100' to 130' F In molten salt at 1000° to 1050' F (811 to 839 K) 
(311 to 327 K) 

Air cool To room temperature 

Deep freeze _ l O O o  F (200 K) for  4 h r  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Temper 350' F (450 K) for 6 h r  	 l l O O o * l O o  F 

(866*5 K) for 2 h r  

Stabilize 350' F (450 K) for 2 h r  l l O O o , t l O o  F 
0 (866*5 K) for 2 h r  

Stabilize 350' F (450 K) for 2 h r  	 1000°~lOoF 
(811+5 K) for 2 h r  

To <150° F (339 K) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
1125°*100 F 1075°*100 F 1025°k100 F 
(880*5 K) for 2 h r  (853k5 K) for 2 h r  (825*5 K) for 2 h r  

1125°*100F 1075°*100 F 1025°*100 F 
(880*5 K) for 2 h r  (853k5 K) for 2 h r  (825*5 K) for 2 h r  

1000°~lOoF 975O*1Oo F 975O*lO0 F 
( 8 1 k 5  K) for 2 h r  (797k5 K) for 2 h r  (797*5 K) for  2 h r  

Air cool To room temperature 
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(a) Lot A. ( C )  Lot c. 

( b )  Lot B. 

Figure 1. - Photomicrographs of AIS1 52100 steels; 2 percent Nital etch. 

( a )  Lot A. (b )  Lot B. 

( C )  Lot c. 
Figure 2. - Photomicrographs of AIS1 M-50 steels; 2 percent Nital etch. 
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(a) Lot A. (b) Lot B. 

( c )  Lot c. 
Figure 3. - Photomicrographs of AIS1 M-10 steels; 2 percent Nital etch. 

( a )  Lot A. (b) Lot B. 

( c )  Lot c. 
Figure 4, - Photomicrographs of AIS1 M-1 steels; 2 percent Nital etch. 
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(a )  Lot A. (b)  Lot B. 

( c )  Lot c. 

Figure 5. - Photomicrographs of AIS1 M-2 steels; 2 percent Nital etch. 


TABLE III. - PROPERTIES OF TEST MATERIALS 

Material Heat Average Retained Austenitic 
:reatment hardness, Austenite, :rain sizea 

lot RC 
volume perce 

AISI 52100 A 6 2 . 5  4 . 9 0  13 

B 6 2 . 0  4 . 1 0  13 

C 6 2 . 5  . 8 0  13 
~ 

AISI M-50 A 6 2 . 6  I .  90 1 0 . 3  

B 62 .2  2 . 9 0  9 

C 62. 3 1. 50 10 

AISI M-10 A 6 2 . 2  1 . 1 0  9 

B 6 2 . 0  2 . 4 0  6 

C 61. 8 1 .60  6 

AISI M-1 A 63. 3 2 . 9 0  10 

B 6 3 . 4  3. 30 9 

C 63. 5 1 .00  8 

AISI M-2 A 6 3 . 4  1. 70 6 

B 6 3 . 4  2 . 4 0  10 

C 6 3 . 4  2.  30 9 

aASTM E 112-63. 
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TABLE IV. - MATERIAL 
CLEANLINESS RATINGS 

Material Heat Cleanliness rating 
~~ 

treatment 
lot Classk Type 

AISI 5210( A B1 Heavy 

AIS1 M-50 A B1 Heavy 
Qi B 

B D2 Heavy 
C D1 Heavy 

______~ 

AISI M-10 A D3 Heavy 
B D2 Heavy 
C D1 Thin 

~ 

B D1 Thin Load 
C D1 Thin Lower test ball-, \ 

~ 

LContact axisAIS1 M-1 A B2 Heavy 
B A1 Heavy Raceway-/ ‘-Upper test ball 
C A2 Heavy 

~ CD-598-15 
AISI M-2 	 A B1 Heavy 

B D1 Thin Figure 6. - Five-ball test assembly. 

C D1 Heavy 
~ 

aASTM E45-63, Method A (table shows 
predominate inclusion class and type). 

bInclusion classes: A, sulfides; B, alu­
mina; C, si l icates;  D, globular oxides. 

APPARATUS AND PROCEDURE 

Five-Ball Fatigue Tes te r  

The five-ball fatigue tester was used for  all tests conducted. The test assembly, 
shown in figure 6, consists of an upper-test ball pyramided on four lower-test balls that 
are positioned by a separator and are f r ee  t o  rotate in an angular-contact raceway. Sys­
tem loading and drive are supplied through a vertical drive shaft. For every revolution 
of the drive shaft, the upper-test ball received three stress cycles. The upper-test ball 
and raceway are analogous in operation to the inner and outer races  of a bearing, re­
spectively. The separator and the lower-test balls function in a manner s imilar  to  the 
cage and the balls in a bearing. Lubrication is provided by a once-through, mist-type 
lubrication system. 
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Fatigue Testing 

In each of these tests, all five balls were from the particular material lot being 
tested. From 25 to  30 five-ball tests were run for each material lot. Each test was 
suspended when either an upper-test ball failed, a lower-test ball failed, or  when a cut­
off time of 100 hours was reached. 

Hardness Testing 

The hardness of the materials was measured at both room and elevated temperatures 
using a standard hardness tester fitted with an electric furnace. Ball specimens from 
the same heats as those fatigue tested herein were selected at random for  hardness test­
ing. Two 1/4-inch (6.4-mm) parallel flats were ground on each ball. The grinding was 
done at a very slow feed rate with a copious supply of coolant to  prevent any overheating 
of the test specimens. 

Hardness measurements were  taken after reaching an equilibrium temperature be­
fore increasing the heat input for  the next higher temperature. Approximately 1/2 hour 
elapsed before equilibrium was reached at each test temperature. 

Method of Presenting Fatigue Results 

The statistical methods of reference 11for  analyzing rolling-element fatigue data 
were  used to obtain a log-log plot of the reciprocal of the probability of survival as a 
function of the log of upper-ball stress cycles to failure (Weibull coordinates). For con­
venience, the ordinate is graduated in statistical percent of specimens failed. From a 
plot such as this, the number of upper-ball stress cycles necessary to fail any given 
portion of the specimen group may be determined. 

For purposes of comparison, the 10-percent life on the Weibull plot was used. The 
10-percent life is the number of upper-ball stress cycles at which 10-percent of the 
specimens can be expected to fail; this 10-percent life is equivalent to a 90-percent prob­
ability of survival. The failure index indicates the number of system failures out of those 
tested. The five-ball system was considered failed when a fatigue spa11 occurred on 
either the upper or lower test balls. Analyses were also performed considering only 
upper -ball failures with lower-ball failures being considered as suspensions. 
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F?XSULTS AND DISCUSSION 

Fatigue Results 

Five steels (AJSI 52100, M-1, M-2, M-10, and M-50) were tested in the five-ball 
fatigue tester. Groups of 1/2-inch- (12.7-mm-) diameter balls of each of these mater i ­
als were tested at a maximum Hertz stress of 800 000 psi (5.52X109 N/m 2), a contact 
angle of 30°, and a shaft speed of 10 300 rpm. Tests  were run at a race temperature of 
150' F (340K) with a super-refined naphthenic mineral oil as the lubricant. 

All balls for  each material  were made from one consumable-electrode vacuum-
melted ingot. Three lots of each material  were separately heat treated, but one heat 
treatment specification was used for each material. 

The results of the fatigue tests with each heat treatment lot of each material  a r e  
shown in the Weibull plots of figures 7 to 11. Both upper- and lower-test ball fatigue 
failures were considered,in determining the five-ball system life in the Weibull analysis. 

The 10-percent lives fo r  each material lot are shown in table V. A 2 to  1 ratio in 
the 10-percent lives of two lots of the same material  is observed with both AISI 52100 
and AISI M-10. (It should be recalled that the only difference between lots of the saue 
material  is that they were heat treated separately.) These differences in fatigue lives 
cannot be attributed t o  the slight differences in the material  properties shown in 
tables III and IV such as hardness, grain size,  retained austenite, and cleanliness since 
no clear trends are apparent. These slight material  property differences may be a re­
sult of slight variations in execution of the heat treatment, or  they may be scat ter  in the 
property measurements. The differences in 10-percent fatigue lives between material  
lots may also be normal scat ter  in rolling-element fatigue data. The 2 to  1 ratio in 
fatigue lives among the lots of the same material  is not unexpected based on previous 
experience. 

Also tabulated in table V a r e  the results of analyses considering upper-ball failures 
as failures and lower-ball failures as suspensions. Including lower-ball failures as 
failures seems to  yield a consistently but slightly lower life of each group. No significant 
differences between the two analyses a r e  indicated. 

Material Comparison 

The tests with all three heat treatment lots of each material  were grouped together 
to  compare the fatigue lives of the various materials. A Weibull analysis was performed 
on the combined results for each material. The resul ts  a r e  shown in table VI. Ten-
percent lives of the materials are shown in figure 12. A direct comparison shows that, 
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(b) Lot B; 22 fai lures out  of 29 tests.  (c) Lot C; 19 fai lures out of 25 tests. 

Figure 7. - Rolling-element fatigue l i fe of l /Z- inch- (12.7-mm4 diameter AIS1 52100 consumable-electrode vacuum-melted steel 
balls in  the five-ball fatigue tester. Maximum Hertz stress, 800 OM) psi ( 5 . 5 2 ~ 1 0 ~N/m2); shaft speed, 10 300 rpm; contact angle, 
30"; temperature, 150" F (340 KI. 
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9 Upper-ball fa i lu re  
0 Lower-ball fa i lu re  
A Upper- and lower-ball fa i lu re  

r 

4 6 8 10 20 40 6080100 4 6 8 1 0  20 40 6080100 200 
System life, mi l l ions of upper-ball stress cycles 

(a) Lot A; 29 fa i lures ou t  of 29 tests. (b) Lot B; 24 fai lures ou t  of 30 tests. (c) Lot C; 26 fai lures out of 29 tests. 

Figure 8. - Rolling-element fatigue l i fe of 1/2-inch (12.7-mm-) diameter A SI M consumable-electrode vacuum-melted steel balls in 
);the  five-ball fatigue tester. Maximum Hertz stress, 800 OOO psi (5 .52~10d Nlm9-shaft speed, 10 300 rpm; contact angle, 30"; temper­

ature, 1%"F (340K). 

at the 10-percent life level, the material  with the longest fatigue life is AISI 52100. 
AISI M-50 gave the next highest 10-percent life, which was about 68 percent of that of 
AISI 52100. The shortest  life material  was AISI M-2, which gave a 10-percent life of 
about 27 percent of that of AISI 52100. 

Because of the large number of failures (63 to  87) in the combined groups, life 
ratios of 3 o r  4 to  1 can be significant. To determine the significance of these fatigue 
results, the confidence numbers shown in table VI were calculated by methods of ref­
erence 11. The AISI 52100 10-percent life is used as a reference. These confidence 
numbers indicate the percentage of the time that the 10-percent life obtained with a 
group of AISI 52100 balls will be greater  than that of a group of balls of one of the other 
materials. The confidence numbers for AISI M-1 and M-2 exceed 99 percent. For 
AIS1 M-10 and M-50, the confidence numbers are 91 and 89 percent, respectively. These 
results indicate that the differences in fatigue lives between AISI 52100 and either AISI 
M-1 or M-2 a r e  significant. The results fo r  AISI M-10 and M-50 show less confidence 
in the fatigue life differences, but these differences appear to  be significant. 

AISI M-1 and M-2 contain somewhat higher percentages of alloying elements such as 
molybdenum, vanadium, chromium, and tungsten which give them better hot -hardness 
characteristics than the other materials. The hi&er percentages of alloys may also 
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(b) Lot B: 30 fai lures out of 30 tests. (c) Lot C: 29 fa i lures out of 30 tests. 

Figure 9. - Rolling-element fatigue l i fe  of l k i n c h - (127-mm-) diameter AJSI M-10 consumable-electr8de 
vacuum-melted steel balls in the five-ball fatigue tester. Maximum Hertz stress, 800 OOO psi (5.52~10 
N l m q ;  shaft speed, 10 300 rpm; contact angle, 30": temperature, 150" F (340 K). 
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(b) Lot B; 28 fai lures out of 29 tests. (c) Lot C; 29 fai lures out of 30 tests. 

Figure 11. - Rolling-element fatigue l i fe of 1/2-inch- (12.7-mm-) diameter A I S 1  M-2  consumable-electrode vacuum-melted steel balls in the  f ive-
ball fatigue tester. Maximum Hertz stress, 800 aM psi (5.52x109 N/m2); shaft speed, 10 300 rpm; contact angle, 30"; temperature, 150" F 
(340 K). 
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TABLE V. - FATIGUE RESULTS WITH GROUPS O F  1/2-INCH- (12. 7-MM-) DIAMETER BALLS RUN IN 

FIVE-BALL FATIGUE TESTER 

[Maximum Hertz stress, 800 000 psi (5.52~10' N/m2); contact angle, 30'; shaft speed, 10 300 rpm; 
temperature, 150' F (340 K).] 

Material --Lower- and upper-ball failures 
treatment 

Life, millions Slope Failure indexa 
of upper -ball 
s t r e s s  cycles 

50 

ABI 52100 114 1.04 22 out of 29 
130 1.29 22 out of 29 
84 1.00 19 out of 25 

-~ 

AISI M-50 35 2.29 29 out of 29 
36 1 .73  24 out of 30 
48 1.55 26 out of 29 

AISI M-10 A 19.4 65 1.56 26 out of 30 
B 8 .3  46 1.11 30 out of 30 
C 13 .1  42 1.62 29 out of 30 

AISI M-1 A 8.2 43 1.13 29 out of 30 
B 5.9 37 1.02 29 out of 30 
C 6.7  33 1. 18 29 out of 29 

KC31 M-2 	 35 1.05 28 out of 30 
26 1.23 28 out of 29 
31 .95 29 out of 30 

!Indicates number of failures out of total number of tests.  

Upper-ball failures only 

Life, millions Slopc Failure indexa 
of upper-ball 
s t r e s s  cycles 

L1o L50 

21.0 139 1.00 14 out of 29 
31.5 161 1.15 15 out of 29 
14.5 83 1.08 15 out of 25 

17.0 36 2.54 23 out of 29 
13.4 41 1.67 20 out of 30 
14.2 48 1.55 26 out of 29 

20.5 78 1.42 19 out of 30 
9.9 61  1.04 21 out of 30 

13.2 43 1.60 28 out of 30 

8. 8 46 1.14 27 out of 30 
6.2 39. 1.02 28 out of 30 
6.9 33 1.21 28 out of 29 

6 .7  39 1.07 25 out of 30 
5.7 27 1.21 25 out of 29 
4.2 32 .93  27 out of 30 
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TABLE VI. - COMBINED FATIGUE RESULTS (THREE LOTS OF EACH MATERIAL COMBINED) 

Material Lower- and upper-ball failures Upper-ball failures only 
-

Life, millions o ielative Slope Failure indexa 2onfidencc Life, millions o Slope Failure indexa Confidence 
upper -ball Ll0 life number, upper-ball number, 

s t ress  cycles percent s t ress  cycles percent 

L10 L50 L10 L50 

9IsI 52100 21.2 109 1.0 1.15 63 out of 83 23.2 122 1.14 44 out of 83 

AIS1 M-50 14.4 39 0.68 1.89 79 out of 88 89 15. 3 42 1.88 69 out of 88 

AISI M-10 13.2 50 0.62 1.40 85 out of 90 91 14.4 57 1.36 68 out of 90 87 
~ 

9IsI M-2 5. 7 30 0.27 1.13 85 out of 89 >99 6.0 32 1.12 77 out of 89 >99 

AISI M-1 7.6 38 0. 36 1.18 87 out of 89 >99 8.0 39 1.18 83 out of 89 >99 
~ 

h d i c a t e s  number of failures out of total number of tests. 
'Percentage of time that the 10-percent life with a group of AIS1 52100 balls will be greater than that of a group of one of the 

other materials. 

V 


m 3 0 1  
Three lots combined using Weibull analysis 


251- I I 

AISI 52100 AIS1 M-50 AISI M-10 AISI M - 1  AISI M-2 

Figure 12. -Comparison of 10-percent fatigue lives of five bearing 
steels at 150" F (340 K). 
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affect the materials '  resistance t o  rolling-element fatigue. 
The analyses considering lower-ball failures as suspensions (table VI) show similar  

results to those previously discussed. 
The fatigue spalls on the balls of all five materials were s imilar  in appearance. 

Examination of the spalls revealed that they were subsurface in origin. 

hardness  at Elevated Temperature 

The measured hardness at elevated temperatures of each of the materials investi­
gated herein is shown in figure 13. Hardness, as expected, decreases with increasing 
temperature. A commonly accepted minimum hardness at operating temperature for  
bearing components is Rockwell C 58. At a hardness below this value, brinelling of the 
bearing races  can occur and plastic deformation during operation can be excessive. 

AISI 52100 has been considered useful to  temperatures of about 350' F (450 K). 

Mater ia l  

68 	 0 A I S 1 5 2 1 0 0  
0 A I S I  M - l  
0 A I S I  M - 2  
v A I S I M - 1 0  
n AISIM-50 

64 

m­
a, 


E 
E 

b 
5 4 L  

I 
L _ L  L 1 J 

b 200 400 600 800 loo0 
Ball temperature, O F  

- 1 I I I 
300 400 500 600 700 800 

Ball temperature, K 

Figure 13. - Ball hardness (Rockwell C)a s  func t ion  o f  ball 
temperature for  A I S I  5200, A I S I  M-1, A I S I  M-2, A I S I  
M-10, and A I S I  M-50. 
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However, the data presented in figure 13  would suggest th&t AIS1 52100 steel  can be func­
tional at temperatures to  nearly 400' F (478 K). However, from table II the tempering 
temperature was 350' F (450 K). W e r e  the temperature to  remain at 400' F (478 K) for  
any appreciable length of t ime beyond that which it took to  perform the hardness meas­
urements, a further decrease in the material  hardness would be expected. 

In order  to  obtain these hardness data, two parallel  f lats were ground on each ball 
specimen to  be measured. For the initial hardness measurements presented in table 111 
for  the AISI 52100 steel, an average Rockwell C hardness of 6 2 . 3  was reported. These 
measurements were taken on 1/8-inch (3.2-mm) flats. However, for all hardness 
measurements reported in figure 13  the flats were increased in diameter to  1/4 inch 
( 6 . 4  mm). 

Even though the grinding of the flats was done at a very slow feed rate with a copious 
supply of coolant, a certain amount of tempering of the AISI 52100 steel apparently 
occurred. As a result, the room temperature hardness of the steel had dropped t o  a 
Rockwell C hardness of 61.  It is speculated, however, that the curve for  the AISI 52100 
steel  can be shifted up 1 point Rockwell C for comparison purposes. 

However, as the tempering temperature is approached, this upward shift may not be 
valid. For the M-series materials,  where the tempering temperatures exceed 1000° F 
(811 K) (table 11), such a shift may have more validity. 

In order  to  verify this, ball specimens of two hardness levels of AISI M-1 steel  
from the same heat of material  as the balls fatigue tested were checked for  hardness as 
a function of temperature. These data are shown in figure 13. For the AIS1 M-1 steel, 
the higher hardness specimen had a room temperature Rockwell C hardness of approxi­
mately 66; where the lower hardness specimen had a hardness of approximately 63. A 
constant difference of 3 to  4 points Rockwell C separates the two curves throughout the 
range of temperature investigated. 

The room temperature hardnesses for AISI M-10, M-1, and M-2 shown in figure 13  
indicate that there  was some tempering due to  grinding of l e s s  than 1 point Rockwell C. 
The tempering temperature for  these materials were all greater  than 1000° F (811 K). 
The data for  the AIS1 M-50 shown in figure 13  shows no tempering due to  grinding. 

In reference 3 the maximum operating temperatures for  AISI M-50 were reported 
to be approximately 600' F (589 K); f o r  AISI M-10, 800' F (700 K); and AIS1 M-1 and 
M-2, 900' F (755 K). In order  to  compare the hardness retention capabilities of these 
materials on the basis of the present hardness data, the various curves for  the M-series 
steels were adjusted to the same room temperature hardness, that being 6 2 . 5 .  These 
curves are presented in figure 14. From these data and those in figure 13  it can be seen 
that the M-50 material  maintains a hardness of Rockwell C 58 to  temperatures in excess 
of 650' F (615 K). The ATSI M-1 steel has a potential to  approximately 750' F (672 K) 
where the material  hardness drops below 58. The ATSI M-2 steel has  approximately the 
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Figure 14. - Hardness adjusted to common room tempera­
t u r e  value for A I S I  M-1, M-2, M-10, and M-50. 

same hot hardness curve as the AISI M-10 where at a temperature of approximately 
650' F (615 K) its hardness drops below 58. 

These data indicate that, contrary to previously published work on the M-series 
steels, there  appear to  be no significant differences among three of these material  
(AISI M-50, M-10, and M-2) in their  ability to  maintain hardness at elevated temper­
ature.  On the other hand the AIS1 M-1 material  indicates an approximately 100' F (56 K) 
higher temperature potential than these three materials.  

GENERAL COMMENTS 

The data presented in the previous section clearly shows the superiority of AIS1 52100 
over the other materials at the same hardness in rolling-element fatigue resistance. 
These data a r e  at moderate temperatures,  approximately 150' F (340 E ' .  The choice of 
an "M" ser ies  steel offers  no advantage over AISI 52100 on the basis of *atigue life 
assuming that the hardness of &I 52100 is approximately the same as the "M" ser ies  
steel  at operating temperature. At about 350' F (450 K), the hardness of AISI 52100 
drops below the accepted minimum hardness fo r  rolling-element bearings, Rockwell C 58. 
The "M" se r i e s  alloys retain acceptable hardness to  higher temperatures. In general, 
as hardness of the components in a rolling-element bearing decreases,  fatigue life de­
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creases  (refs. 6,  12, and 13). It is apparent then, that as bearing temperatures approach 
350' F (450 K) the choice of an alloy steel such as AISI M-50 is advantageous. As a 
practical matter the maximum obtainable hardness with AISI M-50 is approximately 
Rockwell C 63. With AISI M-1 steel, the maximum obtainable hardness is in the range 
of 65 to 66 Rockwell C. As a result ,  for  temperatures above 700' F (644 K) it may be 
necessary to  specify AIS1 M-1. 

SUMMARY OF RESULTS 

Rolling-element fatigue studies were performed with five consumable -electrode 
vacuum-melt steels. Groups of 1/2-inch- (12. 7-mm-) diameter balls of each material  
were run in five-ball fatigue tes te rs  at a maximum Hertz s t r e s s  of 800 000 psi  (5. 52X'lO9 

N/m2), a contact angle of 30°, and a shaft speed of 10 300 rpm. The tests were run at 
a temperature of 150' F ,(340 K) with a super-refined naphthenic mineral oil lubricant. 
Care was taken to maintain constant all variables that are known to  affect rolling-element 
fatigue life. The following results were obtained: 

1. The longest fatigue lives were obtained with AISI 52100. The 10-percent lives of 
the other four materials ranged from 27 to 68 percent of that of AISI 52100. 

2. The fatigue lives of the AISI M-1 and M-2 materials were significantly l e s s  than 
the fatigue life of AISI 52100. At the 10-percent level, the confidence that the group of 
AISI 52100 balls is better in rolling-element fatigue resistance than the AISI M-1 o r  M-2 
balls is greater than 99 percent. 

3. The fatigue lives of AIS1 M-50 and M-10 were similar.  The confidence that 
AISI 52100 is better in rolling-element fatigue than these two materials is approximately 
90 percent. 

4. Lives of different heat treatment lots of the same material  differed by factors as 
great as two. 

5. The fatigue failures on the tes t  balls of all five materials were s imilar  and were 
subsurface in origin. 

6. Contrary to previously published work, there  appears to be no significant dif­
ference among the ability of AIS1 M-50, M-10, and M-2 to maintain hardness at elevated 
temperatures. AIS1 M-1 indicates a higher temperature potential than these three ma­
terials of about 100' F (56 K). 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 3, 1970, 
126-15. 
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